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Application of an Extended Parabolic Equation to the Calculation of 
the Mean Field and the Transverse and Longitudinal Mutual 

Coherence Functions within Atmospheric Turbulence 
 

Robert M. Manning 
National Aeronautics and Space Administration 

Glenn Research Center 
Cleveland, Ohio 44135 

 
 

1. Introduction 
 

The parabolic equation, originally introduced by Fock and Leontovich (ref. 1), has found successful 
application in several subject areas that deal with wave propagation issues. In the case of stochastic 
electromagnetic wave propagation through random media, the use of the parabolic equation was adopted 
by Klyatskin and Tatarskii 36 years ago (refs. 2 and 3) and has since found much success in describing 
propagation phenomena from laser beams to optical images. This type of parabolic equation is accurate 
within the paraxial approximation and is therefore suited to treat small-angle wave scattering about the 
preferential direction of propagation. The paraxial approximation holds when the wavelength λ and the 
characteristic size l0 of the smallest inhomogeniety of the random medium is such that λ<<l0. However, as 
shown by Klyatskin and Tatarskii, (ref. 4), this parabolic equation in the paraxial approximation is 
sufficient in describing optical propagation within the Markov approximation (i.e., where the 
inhomogeneities which compose the random medium are taken to have a δ-function correlation in the 
direction of wave propagation). There are cases, however, in which the wavelength may be on the order 
of the size of the scattering inhomogenieties λ∼l0 thus potentially violating the paraxial approximation 
and requiring an ‘extended’ parabolic equation that still possess a preferential direction of propagation but 
is not bound by the paraxial approximation, i.e., can describe scattering at large angles out of the direction 
of propagation. Such an extended equation can only be derived from the fundamental Helmholtz equation. 

It is the purpose of this work to analytically derive solutions for the generalized mutual coherence 
function (MCF), i.e., the second order moment, of a random wave field propagating through a random 
medium within the context of the extended parabolic equation. Here, ‘generalized’ connotes the 
consideration of both the transverse as well as the longitudinal second order moments (with respect to the 
direction of propagation). Such solutions will afford a comparison between the results of the parabolic 
equation within the pararaxial approximation and those of the wide-angle extended theory. In section 2, 
the extended parabolic equation for electromagnetic wave propagation is given which, of course, derives 
from the stochastic Helmholtz equation. Since this will be an operator equation in the random electric 
field, a statistical operator method is developed in section 3 which will give a general equation for an 
arbitrary spatial statistical moment of the wave field. The generality of the operator method allows one to 
obtain an expression for the second order field moment in the direction longitudinal to the direction of 
propagation. From this, expressions are obtained as a special case for the MCF of the field, both in the 
transverse and longitudinal directions. Analytical solutions to these equations are derived for the 
Kolmogorov and Tatarskii spectra of atmospheric permittivity fluctuations within the Markov 
approximation.  
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2. The Wide-Angle Extended Parabolic Equation 
 

Consider the scalar stochastic Helmholtz equation for an electric field ( )ρ,xE  propagating principally 
along an x-axis and perpendicular to the ρ -plane of an otherwise arbitrary coordinate system 
 

 ( ) ( ) ( ) ( ) ( )ρρε=ρ+ρ∇+
∂

ρ∂
ρ ,,~,,, 222

2

2
xExkxEkxE

x
xE  (1) 

 
where ( )ρε ,~ x  is the random part of the total permittivity ( ) ( )ρε+=ρε ,~1, xx  of the propagation medium. 

Using the decomposition of the total field into a forward propagating field ( )ρ+ ,xE  and a backward 
propagating field ( )ρ− ,xE , i.e.,  
 

 ( ) ( ) ( ) ( ) ( ) ( )
x
xE

x
xE

x
xExExExE

∂
ρ∂

+
∂

ρ∂
=

∂
ρ∂

ρ+ρ=ρ
−+

−+ ,,,,,,,  (2) 

 
with the expansion into inhomogeneous plane waves 
 

 ( ) ( ) ( ) qdxqkiqiqexE 22122exp, ⎥⎦
⎤

⎢⎣
⎡ −±ρ⋅=ρ ±

∞

∞−

∞

∞−

± ∫∫  (3) 

 
one can obtain the following operator expressions for the component fields 
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]ρ+ρρε∇+±=ρ∇+±
∂

ρ∂ −+−
ρ

±
ρ

±
,,,~,2,2 212222122 xExExkkxEk

x
xEi  (4) 

 
such an equation (or its Fourier transform) was considered by Malakov and Saichev (ref. 5) as well as by 
Klyatskin (ref. 6, p. 169) and Frankenthal and Beran (ref. 7). 

In the event that the backscattered field is insignificant with respect to the forward scattered field, i.e., 
( ) ( )ρ>>ρ −+ ,, xExE , one can formally set ( ) 0, =ρ− xE ; equation (4) thus becomes a single equation for 

the forward propagating field 
 

 
( ) ( ) ( ) ( ) ( ) ( )ρρε∇+=ρ∇++
∂

ρ∂ +−
ρ

+
ρ

+
,,~,2,2 212222122 xExkkxEk

x
xEi  (5) 

 
This equation, which can be called the “extended parabolic equation” (ref. 2, p. 169), was previously 

analyzed by Saichev (ref. 8) using a method different from the operator formulation in what is to follow. 
Its integral formulation is also known as the method of multiple forward scatter (refs. 9 and 10). However, 
in (ref. 10) it was pointed out that this method is applicable to situations where the wavelength λ and the 
smallest scale of inhomogeneity l0 is such that λ<l0 (ref. 11); The classical parabolic equation in the 
paraxial approximation holds for cases where λ<<l0. Hence, although equation (5) is capable of 
describing propagation situations in which the wave is scattered at angles up to π/2 with respect to the 
x-axis, its application is limited to cases where λ<l0.  
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The form of equation (5) can be simplified by defining the differential operator 
 

 
21

2

2
2 12 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ∇
+≡ ρ

ρ k
kU  (6) 

 
and the corresponding integral operator 
 

 
21

2

2

2 1
2

1
−

ρ
ρ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ∇
+≡

kk
V  (7) 

 
Equation (5) then becomes 

 

 ( ) ( ) ( ) ( ) 0,,~2,,2 4 =ρρε−ρ+
∂

ρ∂
ρρ xExVkxEU

x
xEik  (8) 

 
Hereafter, the superscript ‘+’ will be dropped. This equation can be reduced to the well-known 

stochastic parabolic equation in the paraxial approximation by expanding the operators to give 
222 ρρ ∇+≈ kU  and 221 kV ≈ρ  and transforming the field via ( ) ( ) ( )ikxxWxE exp,, ρ=ρ . In what is to 

follow, this relation will be employed to yield an operator equation for the generalized statistical moments 
of the field. Here, the term ‘generalized’ connotes moments at differing transverse coordinates ρ  as well 
as differing longitudinal coordinates x.  
 
 

3. Operator Solutions for the Generalized Field Moments 
 

3.1 An Expression for the Generalized nmth Field Moments 
 

Defining the stochastic operator 
 

 ( )ρε+−
∂
∂

≡ ρρρ ,~22 4, xVkU
x

ikDx  (9) 

 
equation (8) simply becomes  
 
 ( ) 0,, =ρρ xEDx  (10) 
 
which is easily amenable to further statistical analysis. To this end, one defines the generalized moment of 
the electric field 
 
 ( ) nmmnmnnnnnnm gxxxxx ≡ρρρρρΓ ++++ ,;,;,;,;, 112211  (11) 
 

 ( ) ( )∏∏
+

+==

ρρ≡
mn

nl
ll

n

j
jjnm xExEg

1

*

1
,,  (12) 
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Using a modification of the prescription set fourth in, e.g., (refs. 12 and 13), one can employ 
equation (10) for each of the field points ( )ρ,x  and obtain for the product of fields 
 
 ( ) 0,;,;,;,;, 112211 =ρρρρρ ++++ mnmnnnnnnmnm xxxxxgL  (13) 
 
where 
 

 ( )( )−ρε++⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂
∂

+
∂
∂

≡ ρρ
==

+

+=
∑∑ ∑ jj

n

j

n

j

mn

nl lj
nm xVkU

xx
ikL jj ,~22 4

11 1
 

 ( )( )ll

mn

nl
xVkU ll ρε+− ρρ

+

+=
∑ ,~2 **4*

1
 (14) 

 
In order to isolate the quantity 〈gnm〉 = Γnm from this relation, it is expedient to adopt the methods of 

(refs. 14 and 15) and decompose the operator Lnm into its average and random parts, i.e.,  
 

 *

111 1
2 lj UU

xx
ikL

mn

nl

n

j

n

j

mn

nl ji
nm ρ

+

+=
ρ

==

+

+=
∑∑∑ ∑ −+⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂
∂

+
∂
∂

≡  (15) 

 
and 
 

 ( ) ( ) 0~,,~,~2~ **

11

4 =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
ρε−ρε≡ ρ

+

+=
ρ

=
∑∑ nmll

mn

nl
jj

n

j
nm LxVxVkL lj

 (16) 

 
Hence, equation (13) becomes 
 
 ( ) 0~ =+ nmnmnm gLL  (17) 
 
Ensemble averaging this relation yields 
 
 0~ =+Γ nmnmnmnm gLL  (18) 

 
Similarly writing 
 
 0~,~ =+Γ= nmnmnmnm ggg  (19) 
 
and substituting into equation (18) gives 
 
 Lnm  nm  ˜ L nm ˜ g nm  0 (20) 
 

Remembering that it is the goal of this development to obtain an expression for the general field 
moment Γnm, one follows the development given in reference 15 and subtracts equation (20) from 
equation (13) and using equation (19) obtains 
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 0~~~ =−Γ−+Γ nmnmnmnmnmnmnmnm gLLgLL  (21) 

 
Combining the first and third members of this equation using the fact that 

[ ] nmnmnmnmnm LLL Γ=Γ− ~  gives 
 
 0~~~~ =−Γ+ nmnmnmnmnmnm gLLgL  (22) 

 
One must now isolate the random quantity nmg~  by defining an operator 1−nmL  inverse to Lnm, i.e., 

11 =− nmnmLL . Thus, operating on equation (22) with 1−nmL  yields 
 

 0~~~~ 11 =−Γ+ −− nmnmnmnmnmnmnm gLLLLg  (23) 

 
Finally, operating on this relation with nmL~ , ensemble averaging and solving the resulting expression 

for nmnmgL ~~  gives 

 

 [ ] nmnmnmnmnmnmnmnm LLLLLgL Γ−−= −−− ~~~1~~ 111  (24) 

 
Substituting this result back into equation (20), one obtains for the equation governing Γnm 

 

 [ ] 0~~~1 111 =Γ
⎭
⎬
⎫

⎩
⎨
⎧ −− −−− nmnmnmnmnmnmnm LLLLLL  (25) 

 
The solution of this operator equation gives an exact solution for the arbitrary field moments for 

wide-angle propagation through a random medium characterized by the stochastic permittivity ( )ρε ,~ x  

and the assumption that 0~ =nmL . Just as in the case of the application of the local method of small 

perturbations (ref. 12), an explicit assumption governing the statistics of the fluctuations ( )ρε ,~ x  does not 
need to be made in the evaluation of the ensemble averages, as will now be demonstrated. 

The general relation given by equation (25) can be reduced to the parabolic equation for the field 
moments in the paraxial approximation in the case where λ<<l. In this instance, one employs the 
approximations for the operators 222 ρρ ∇+≈ kU  and 221 kV ≈ρ used earlier. In addition, the classical 
parabolic equation considers statistical moments in the same transverse plane, i.e., xxx lj == . Thus, the 
partial differential operators in equation (15) collapse into the single operator ∂/∂x. Equations (15) and 
(16) then become 

 

 ∑∑
+

+=
ρ

=
ρ ∇−∇+

∂
∂

≈
mn

nl

n

j
nm ljx

ikL
1

2

1

22  (26) 

 
and 
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 ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
ρε−ρε+≡ ∑∑

+

+==

mn

nl
l

n

j
jnm xxkL

1

*

1

2 ,~,~~
 (27) 

 
Two related palatable approximations must now be made; since nmnmnm LLL ~+≡ , and it is usually 

assumed that 1~ <<nmL , one has  

 

 [ ] [ ] 1~1,~ 11111 ≈−≈+=
−−−−− nmnmnmnmnmnm LLLLLL  (28) 

 
where 
 

 

1

1

2

1

2
1

2

−
+

+=
ρ

=
ρ

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∇−∇+

∂
∂

= ∑∑
mn

nl

n

j
nm ljx

ikL  

 
1

2
−

⎥⎦
⎤

⎢⎣
⎡

∂
∂

≈
x

ik  

 ∫ ′=
x

xd
ik

0
2
1

 (29) 

 
Equation (25) then becomes 
 

 0~~2 1

1

2

1

2 =Γ
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−∇−∇+

∂
∂ −

+

+=
ρ

=
ρ ∑∑ nmnmnmnm

mn

nl

n

j
LLL

x
ik

lj
 (30) 

 
where 
 

 ( ) ( ) ( ) ( ) −ρ′′ερε−ρ′′ερε
⎢
⎢
⎣

⎡
≈ ∑ ∑∑∑∫

=

+

+== =

− li

n

i

mn

nl
ki

n

i

n

k

x

nmnmnm xxxx
i

kLLL ,~,~,~,~
2

~~ *

1 11 10

3
1  

 ( ) ( ) ( ) ( ) xdxxxx lj

mn

nj

mn

nl
kj

mn

nj

n

k
′

⎥
⎥
⎦

⎤
ρ′′ερε+ρ′′ερε− ∑ ∑∑ ∑

+

+=

+

+=

+

+= =

,~,~,~,~ **

1 1

*

1 1
 (31) 

 
which is the well-known classical paraxial form for the problem (ref. 13). It is interesting to note that the 
‘geometrical optics’ approximation made in equation (29) leads to the parabolic equation in the paraxial 
approximation. Thus, one can envision a substantial extension of this development beyond that of the 
classical treatment if one is to use the entire form of the operator 〈Lnm〉–1, i.e., use the inverse of the 
operator 〈Lnm〉 as solved in the paraxial approximation rather than in the geometrical optics approximation 
which was used above. This will form the subject of the next section in which the first order statistical 
moment and the generalized second moment (i.e., the mutual coherence function) are derived using the 
above formalism. 
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3.2 Solution for the First Moment 
 

The first order moment of the random electric field in a plane transverse to the direction of 
propagation is defined through equation (11) to be given by 
 
 ( ) ( )1110 ;; ρ=ρΓ xEx  (32) 
 
which is a solution of the operator relation of equation (25), viz, 
 

 [ ] 0~~~1 10101
1010

11
101010 =Γ

⎭
⎬
⎫

⎩
⎨
⎧ −− −−− LLLLLL  (33) 

 
where, from equations (15) and (16),  
 

 ( ) 141010 ,,~2~,2ˆ
1 ρ≡ρρε≡+

∂
∂

≡ ρρ xVkLU
x

ikL  (34) 

 
The ability to proceed in an analytical fashion is dependent upon the simplifying approximations used 

earlier, viz, one has that  
 

 [ ] [ ] 1~1,~ 11
1010

1
10

1
10101

10 ≈−≈+=
−−−−− LLLLLL  (35) 

 
Using this result, equation (33) becomes 

 

 0~~
1010

1
101010 =Γ

⎭⎬
⎫

⎩⎨
⎧ − − LLLL  (36) 

 
Employing the appropriate definitions of the operators, equation (36) gives 

 

 ( )( ) ( )( ) ( ) 0,,~22,~22 104
1

4 =ρΓ
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
ρε

⎭
⎬
⎫

⎩
⎨
⎧ +

∂
∂

ρε−+
∂
∂

ρ

−

ρρρ xxVkU
x

ikxVkU
x

ik  (37) 

 
This differential equation in the operators Uρ and Vρ must now be simplified and solved for the first-

order moment ( )ρΓ ,10 x .  
To this end, one must first deal with the factor 

 

 ( )ρ≡
⎭
⎬
⎫

⎩
⎨
⎧ +

∂
∂ −

ρ ,2
1

xGU
x

ik  (38) 

 
which is the Green function of the operators ρ+∂∂ Uxik ˆ2 , defined by 
 

 ( ) ( ) ( )ρ′−ρδ′−δ=ρ
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∇
++

∂
∂ ρ xxxG

k
k

x
ik ,122

21

2

2
2  (39) 
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where the definition of Uρ is used. Applying the approximation 222 ρρ ∇+≈ kU  and solving for the green 
function ( )ρ,xG  yields, 
 

 ( ) ( ) ( )[ ] ( ) ( )[ ]
xx

xxikxxikxxGxG
′−

′−ρ′−ρ−′−−⎟
⎠
⎞

⎜
⎝
⎛

π
=ρ′′ρ=ρ

2expexp
4
1,;,,

2
 (40) 

 
Thus, the third term within the brackets of equation (37) can be written 

 

 ( )( ) ( )( ) =ρε
⎭
⎬
⎫

⎩
⎨
⎧ +

∂
∂

ρε≡ ρ

−

ρρ ,~22,~2 4
1

4 xVkU
x

ikxVk  

 ( ) ( ) ( ) ( ) xddxVxVxxGk
x

′ρ′ρ′ερερ′′ρ= ρ′ρ

∞

∞−
∫∫ 2

0

24 ,~,~,;,2  (41) 

 
Proceeding further, one now must deal with the operator products  

 

 ( ) ( )ρε⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∇
+⎟

⎠
⎞

⎜
⎝
⎛=ρε

−
ρ

ρ ,~1
2

1,~
21

2

2

2 x
kk

xV  (42) 

 
Since ( )ρε ,~ x  is a random function, it can be represented in the form of a Fourier-Stieltjes integral 

(ref. 16), i.e.,  
 
 ( ) ( ) ( )κρ⋅κ=ρε ∫ ,exp,~ xdZix  (43) 

 
in which the spectral amplitude ( )ρ,xdZ  is endowed with the same statistical properties as is the random 
function ( )ρε ,~ x  as will be shown in what is to follow. Applying equation (43) to equation (42) gives 
 

 ( ) ( ) ( )κρ⋅κ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ κ
−⎟

⎠
⎞

⎜
⎝
⎛=ρε ∫

−

ρ ,exp1
2

1,~
21

2

2

2 xdZi
kk

xV  (44) 

 
Thus, the ensemble averaged product appearing in right side of equation (41) becomes, 

 

 ( ) ( ) ∫ ∫
−−

ρ′ρ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ κ′
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ κ
−⎟

⎠
⎞

⎜
⎝
⎛=ρ′′ερε

21

2

221

2

22

2 11
2

1,~,~
kkk

xVxV  

 ( ) ( ) ( )κ′′κρ′⋅κ′+ρ⋅κ⋅ ,,exp xdZxdZii  (45) 
 

One now makes use of the fact that the atmospheric permittivity fluctuation field ( )ρε ,~ x  is taken to 
be statistically homogeneous, characterized by a power spectral density ( )κΦε ,x  in the transverse plane, 
and δ-correlated in the longitudinal direction; these circumstances allow one to write (ref. 16) 
 
 ( ) ( ) ( ) ( ) κ′κκ′−κ′+κδ=κ′′κ ε

22,,, ddxxFxdZxdZ  (46a) 
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where for δ-correlated fluctuations in the x direction, the two-dimensional spectrum ( )κ′−ε ,xxF  is given 
by 
 ( ) ( ) ( )κΦ′−πδ=κ′− εε xxxxF 2,  (46b) 
 
in which ( )κΦ  is the three-dimensional spectrum of permittivity fluctuations. Using these relations in 
equation (45) and performing the integrations where possible yields 
 

 ( ) ( ) ( ) [ ] ( ) κκΦρ⋅κ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ κ
−′−δ⎟

⎠
⎞

⎜
⎝
⎛π=ρ′′ερε ε

−∞

∞−
ρ′ρ ∫ 2

1

2

22

2 exp1
2

12,~,~ di
k

xx
k

xVxV d  (47) 

 
where ρ′−ρ≡ρd  is the difference coordinate. 

Taking the statistics governing the random field ( )ρε ,~ x  to be also isotropic, i.e., ( ) ( )κΦ=κΦ εε ,, xx , 
equation (41) can now finally be evaluated by substituting into it equations (40) and (47); converting the 
integration in the dρ -plane into one in plane polar coordinates and performing the associated integrations 
gives 
 

 ( ) κκκΦ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ κ
−π−= ε

−∞

∫ d
k

ki
1

2

2

0

32 1  (48) 

 
where the δ-function relation 
 

 ( )
2
1

0

=′′−δ∫ xdxx
x

 (49) 

 
is employed. 

Returning to equation (37) and, substituting equation (48) into equation (37) gives 
 

 ( ) ( ) 0,1122 10

1

2

2

0

32
21

2

2
2 =ρΓ

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
κκκΦ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ κ
−π+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ∇
++

∂
∂

ε

−∞
ρ ∫ xd

k
ki

k
k

x
ik  (50) 

 
In the plane-wave case, one has that  

 

 ( ) ( ) ( )xx
k

x
k 1010

21

2

2
10

21

2

2
1,1 Γ=Γ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ∇
+=ρΓ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ∇
+ ρρ  (51) 

 
since the plane wave will not possess any transverse variations. In this special case, equation (50) 
becomes 
 

 ( ) ( ) 0122 10

1

2

2

0

322 =Γ
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
κκκΦ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ κ
−π++

∂
∂

ε

−∞

∫ xd
k

kik
x

ik  (52) 
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the solution of which is 
 

 ( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
κκκΦ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ κ
−

π
−Γ=Γ ε

−∞

∫ d
k

xkikxx
1

2

2

0

2
2

1010 1
2

exp0  (53) 

 
This result differs by the factor (1–κ2/κ2)–1 from that of the parabolic equation in the paraxial 

approximation. Of course, the later is obtained from the former by retaining the first term in the series 
expansion of the factor. The presence of this factor tends to accentuate the spatial frequencies near the 
value of the wave number k. Since this theory is applicable to those situations in which λ<l0, most of the 
contribution of this factor to wave scattering will occur at the largest spatial frequencies of the 
inhomogeneities. Hence, in the case of atmospheric turbulence, one can employ the von Karman spectral 
density 
 
 ( ) ( ) 6112

0
22033.0 −

εε +κ=κΦ KC  (54) 
 
which is not bounded at the high spatial frequencies, to compare the result of equation (53) with that of 
the paraxial approximation. Substituting equation (54) into equation (53) and evaluating the integral 
(ref. 13) yields 
 

 ( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−++−Γ=Γ −− xkC

k
K

FKkiikxx n 22
2

2
0

12
35

0
351010 ;

6
1;1,13908.0023.1772.1exp0  (55) 

 
where the structure parameters for the permittivity and refractive index are related by 22 4 nCC =ε . In the 
case of the open atmosphere, one always has within the bounds of the extended parabolic equation, 
k>>K0; thus, the hypergeometric function reduces to unity and k–5/3<<K0

–5/3, allowing equation (55) to be 
approximated by 
 

 ( ) ( ) [ ]xkCKikxx n 2235
01010 3908.0exp0 −−Γ=Γ  (56) 

 
which is the result of the parabolic equation in the paraxial approximation. Hence, the use of the extended 
parabolic equation only makes negligible amplitude and phase corrections to the first order moment of the 
wave field. This result establishes the accuracy of the parabolic equation in the paraxial approximation for 
the first order moment (mean field) as it applies to atmospheric turbulence. The next section will consider 
the calculation of the generalized second-order moment (generalized mutual coherence function) of the 
wave field from the extended parabolic equation and compare its result to that of the paraxial 
approximation. In addition, due to the completeness of the operator analysis, one naturally obtains 
expressions for the MCF along the longitudinal axis.  
 

3.3 Solution for the Generalized MCF (second moment) 
 

The generalized MCF of the random electric field in two planes transverse to the direction of 
propagation is, from equation (11), given by 
 
 ( ) ( ) ( )22*11221111 ;;,;, ρρ≡ρρΓ xExExx  (57) 

 



NASA/TM—2005-213841 11

which is a solution of equation (25), in this case given by 

 [ ] 0~~~1 11111
1111

11
111111 =Γ

⎭
⎬
⎫

⎩
⎨
⎧ −− −−− LLLLLL  (58) 

 
where, from the definitions of equations (15) and (16),  
 

 *
21

11 2122 ρρ −+
∂
∂

+
∂
∂

≡ UU
x

ik
x

ikL  (59) 

 
and 
 
 ( ) ( )[ ] 0~,,~,~2~

1122**11411 21 =ρε−ρε≡ ρρ LxVxVkL  (60) 

 
As with the case for the first order moment, two related approximations must be made at the outset to 

render the problem analytically tractable. In particular, so long as 1~
11 <<L , 

 

 [ ] [ ] 1~1,~ 11
1111

1
11

1
11111

11 ≈−≈+=
−−−−− LLLLLL  (61) 

 
which allows equation (58) to become 
 

 0~~
1111

1
111111 =Γ

⎭⎬
⎫

⎩⎨
⎧ − − LLLL  (62) 

 
At this point, it is suggested to connect the longitudinal coordinates x1 and x2 to the related centroid xc 

and difference xd coordinates, 
 

 21
21 ,

2
xxxxxx dc −≡

+
≡  (63) 

 
the operator expressions of equations (59) and (60) then become 
 

 *11 212 ρρ −+
∂
∂

≡ UU
x

ikL
c

 (64) 

 

 0~,,
2

~,
2

~2~
112**1411 21 =⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ρ−ε−⎟

⎠
⎞

⎜
⎝
⎛ ρ+ε≡ ρρ LxxVxxVkL d

c
d

c  (65) 

 
Hence, equation (62) can be written as 
 

 
⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ ρ−ε−⎟

⎠
⎞

⎜
⎝
⎛ ρ+ε−−+

∂
∂

ρρρρ 2**14* ,
2

~,
2

~22 2121
d

c
d

c
c

xxVxxVkUU
x

ik  

 0,
2

~,
2

~22. 112**14
1

*
2121 =Γ

⎥
⎥

⎦

⎤

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ ρ−′ε−⎟

⎠
⎞

⎜
⎝
⎛ ρ+′ε

⎭
⎬
⎫

⎩
⎨
⎧

−+
∂
∂

ρρ

−

ρρ
d

c
d

c
c

xxVxxVkUU
x

ik  (66) 
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The solution of this equation commences with obtaining an expression for the Green function 

 

 ( )21

1
* ,,2 21 ρρ≡
⎭
⎬
⎫

⎩
⎨
⎧

−+
∂
∂

−

ρρ c
c

xGUU
x

ik  (67) 

 
Proceeding as in the last section and using the approximation 222ˆ ρρ ∇+≈ kU , this requires the 

solution of  
 

 ( ) ( ) ( ) ( )221121* ,,2 21 ρ′−ρδρ′−ρδ′−δ=ρρ
⎭
⎬
⎫

⎩
⎨
⎧

−+
∂
∂

ρρ cc
c

xxxGUU
x

ik  (68) 

 
which is given by 
 

 ( ) ( ) ( )( ) ( )[ ]cc
cc

c xxik
xx

ikxG ′−ρ′−ρ−ρ′−ρ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′−

⎟
⎠
⎞

⎜
⎝
⎛

π
⎟
⎠
⎞

⎜
⎝
⎛−=ρρ 2exp1

2
1

2
,, 2211

22

21  

 
 ( )2211 ,, ρ′−ρρ′−ρ′−= cc xxG  (69) 
 

Therefore, the fourth term in equation (66) is given by 
 

 ( ) ( ) −⎟
⎠
⎞

⎜
⎝
⎛ ρ′+′ε⎟

⎠
⎞

⎜
⎝
⎛ ρ−ερ′ρ′′ρρ= ρ′ρ

∞

∞−

∞

∞−
∫∫∫ 1*2121

0

24 ,
2

~1,
2

~,,;,,2
11

d
c

d
c

x xxxxVVxxGk  

 +⎟
⎠
⎞

⎜
⎝
⎛ ρ′+′ε⎟

⎠
⎞

⎜
⎝
⎛ ρ−ε−⎟

⎠
⎞

⎜
⎝
⎛ ρ′−′ε⎟

⎠
⎞

⎜
⎝
⎛ ρ+ε− ρ′ρρ′ρ 12**2*1* ,

2
~,

2
~,

2
~,

2
~

1221
d

c
d

c
d

c
d

c
xxxxVVxxxxVV  

 c
d

c
d

c xdddxxxxVV ′ρ′ρ′⎟
⎠
⎞

⎜
⎝
⎛ ρ′−′ε⎟

⎠
⎞

⎜
⎝
⎛ ρ−ε+ ρ′ρ 22122*2*** ,

2
~,

2
~

22  (70) 

 
One now employs the Fourier-Stieltjes transform as before to represent the products of Vρε, i.e.,  

 

 ( ) ⎟
⎠
⎞

⎜
⎝
⎛ κ±ρ⋅κ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ κ
−=⎟

⎠
⎞

⎜
⎝
⎛ ρ±ε

−

ρ ∫ 2,12,12,1

21

2

2
2,1

22,1 ,
2

exp1
2

1,
2

~ d
c

d
c

xxdZi
kk

xxV , etc., (71) 

 
and obtains the following relations (functional arguments have been suppressed but the correspondence to 
those in equation (70) follows) 
 

 ( )[ ] ( ) 121111

1

2

2
1

2

2 ,exp1
2

1~~
11 κκ′−ρ′−ρ⋅κ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ κ
−⎟

⎠
⎞

⎜
⎝
⎛=εε ε

−

ρ′ρ ∫ dxxFi
kk

VV cc  (72a) 

 

 ( )[ ] ( ) 121211

1

2

2
1

2

2
** ,exp1

2
1~~

21 κκ+′−ρ′−ρ⋅κ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ κ
−⎟

⎠
⎞

⎜
⎝
⎛=εε ε

−

ρ′ρ ∫ dxxxFi
kk

VV dcc  (72b) 
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 ( )[ ] ( ) 222122

1

2

2
2

2

2
** ,exp1

2
1~~

12 κκ−′−ρ′−ρ⋅κ−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ κ
−⎟

⎠
⎞

⎜
⎝
⎛=εε ε

−

ρ′ρ ∫ dxxxFi
kk

VV dcc  (72c) 

 

 ( )[ ] ( ) 222222

1

2

2
2

2

2
**** ,exp1

2
1~~

22 κκ′−ρ′−ρ⋅κ−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ κ
−⎟

⎠
⎞

⎜
⎝
⎛=εε ε

−

ρ′ρ ∫ dxxFi
kk

VV cc  (72d) 

 
Substituting equations (69) and (72a) to (72d) into equation (70), performing the required integrals 

over ′ρ1  and ′ρ2  in plane polar coordinates, and taking all the spectra ( ) ( )2,12,1 ,, κ=κ εε xFxF , i.e., to be 
isotropic in the frequency κ , one obtains 
 

 
( ) ( )−κ′−

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡ ′−κ
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ κ
−π−= ε

−∞

∫ ∫ ,
2

exp1
2

1

0 0
2

2
3 cc

cc
x

xxF
k

xxi
k

ki
c

 

 
( ) ( ) ( ) −κ+′−κρ⎥

⎦

⎤
⎢
⎣

⎡ ′−κ
− ε ,

2
exp 0

2
dccd

cc xxxFJ
k

xxi  

 
( ) ( ) ( )+κ−′−κρ⎥

⎦

⎤
⎢
⎣

⎡ ′−κ
−− ε ,

2
exp 0

2
dccd

cc xxxFJ
k

xxi  

 
( ) ( ) ( ) cccd

cc dxdxxFJ
k

xxi κκ
⎭
⎬
⎫

κ′−κρ⎥
⎦

⎤
⎢
⎣

⎡ ′−κ
+ ε ,

2
exp 0

2
 (73) 

 
where 21 ρ−ρ≡ρd  is the difference coordinate. Using equation (46b) in equation (73) and performing 
the xc integration, remembering equation (49), finally gives 
 

 ( ) ( ) κκκΦ
⎭
⎬
⎫

⎩
⎨
⎧

κρ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ κ
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ κ
−π−= ε

−∞

∫ dJ
k
xi

k
ik d

d
0

2
1

0
2

2
32

2
exp112  (74) 

 
Hence, equation (66) becomes 

 

 ( ) ( ) 0
2

exp1122 110
2

1

0
2

2
32*

21 =Γ
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
κκκΦ

⎭
⎬
⎫

⎩
⎨
⎧

κρ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ κ
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ κ
−π+−+

∂
∂

ε

−∞

ρρ ∫ dJ
k
xi

k
ikUU

x
ik d

d

c
 (75) 

 
where Γ11 = Γ11(xc,xd,ρd). Making the plane wave approximation of equation (75), analogous to that done 
earlier for equation (50), the resulting differential equation has as a solution 
 

 ( ) ( ) ( ) ( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
κκκΦ

⎭
⎬
⎫

⎩
⎨
⎧

κρ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ κ
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ κ
−π−ρΓ=ρΓ ε

−∞

∫ dJ
k
xi

k
xkxx d

d
cdddc 0

2
1

0
2

2
221111 2

exp11exp,0,0,,  (76) 

 
(More explicitly, one has in equation (75) 
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 ( ) ( ) ( ) ( )22111122221111* ,;,,;,

2121 ρρΓ∇−∇≈ρρΓ− ρρρρ xxxxUU  

 ( )dR xxd ρΓ∇⋅∇= ρ ,,2 2111  
 0=  
 
where ( ) 221 ρ+ρ≡R  is the centroid coordinate.) It is important to note the initial condition Γ(0,0.ρd); 
since one necessarily must take xc, one must also have xd = 0 by equation (63) since x1,x2≥0.  

This result cannot be analytically studied in its entirety and hence will be considered in two special 
cases. The first case is defined by xd = 0 in which one deals with the transverse MCF 
Γ(xc,ρd) ≡ Γ(xc,0,ρd). Thus, the extended parabolic equation solution for the MCF in a transverse plane at 
a distance xc from the source is, from equation (76) 
 

 ( ) ( ) ( ){ } ( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
κκκΦκρ−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ κ
−π−ρΓ=ρΓ ε

−∞

∫ dJ
k

xkx dcddc 0

1

0
2

2
221111 11exp,0,0,  (77) 

 
As with the case of the first-order moment, this result differs from that of the paraxial approximation 

in the presence of the factor (1-κ2/k2)–1 which serves to accentuate spectral contributions for frequencies 
near k. The integral indicated in this expression cannot be analytically evaluated using the von Karman 
spectrum, equation (54). However, since the integrand is such that no singularities exist in the use of the 
unbounded Kolmogorov spectrum, viz., equation (54) with K0 = 0, one can use such a spectrum in 
equation (77) and, upon evaluating the integral, obtain 
 

 ( ) ( ) ( ) ( )( ) +⎢
⎣

⎡

⎩
⎨
⎧

ρ−−−ρΓ=ρΓ − dddc kJkix 0351111 1048.2544.3exp,0,  

 
⎥
⎥
⎦

⎤

⎪⎭

⎪
⎬
⎫
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ρ
−ρ+ cn

d xCk
k

Fk 22
22

213112
4

;
6

17,
6

17;1108.0  (78) 

 
where ( )21F  is a generalized hypergeometric function and, as noted earlier, 22 4 nCC =ε . At the outset, 
since λ<<ρd in most applications, the first term within the braces of equation (78), although quite 
interesting in structure, is negligible with respect to the second term. The hypergeometric function of the 
second term is most easily dealt with by first converting it to a Lommel function ( )0,µs  
(ref. 17, p. 986), i.e.,  
 

 ( ) ( )dd
d ksk

k
F ρρ⎟

⎠
⎞

⎜
⎝
⎛=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ρ
− −

0,3
8

311
222

21 3
11

4
;

6
17,

6
17;1  (79) 

 
The Lommel function reduces (ref. 17, p. 985), in the case where kρd>>1, to the simple approximate 

result ( ) ( ) 35
0,3

8 dd kks ρ≈ρ . Using this in equation (79) and (78) becomes the paraxial result 

 
 ( ) ( ) [ ]cdnddc xCkx 35221111 457.1exp,0, ρ−ρΓ=ρΓ . (80) 
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Again, as with the first-order moment, corrections to the second moment afforded by the extended 
parabolic equation are negligible in the case of atmospheric turbulence. This is due to the fact that the 
Kolmogorov spectral density level near the inner scale of turbulence is much smaller than it is at larger 
scale sizes. If another spectral density were considered, e.g., one describing propagation through an 
aerosol medium, this may not be the case and significant corrections to the transverse MCF may prevail. 

The second special case in which equation (76) will be examined is in the instance where the factor 
(1-κ2/k2)–1 can be neglected; as shown above, this is a good approximation for atmospheric turbulence. 
Thus, one is now dealing with the solution for the generalized MCF for field locations at different 
transverse and longitudinal points, 
 

 ( ) ( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
κκκΦ

⎭
⎬
⎫

⎩
⎨
⎧

κρ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ κ
−−π−ρΓ=ρΓ ε

∞

∫ dJ
k
xixkxx d

d
cdddc 0

2

0

221111 2
exp1exp,0,0,,  (81) 

 
Longitudinal correlations of the wave field have been previously considered in (refs. 18 and 19) using 

different methods and obtaining different results. Setting xd = 0 in equation (81) gives the well known 
paraxial result for the transverse MCF Γ(xc,0,ρd). Unlike the cases studied above, the form of 
equation (81) suggests the use of the Kolmogorov spectrum as modified by Tatarskii, which incorporates 
a cutoff at high spatial frequencies by allowing the introduction of the inner scale of turbulence l0, viz., 
 

 ( )
02

2
3112 92.5,exp033.0

l
C m

m
≡κ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

κ

κ
−κ=κΦ −

εε  (82) 

 
Substituting equation (82) into equation (81) and evaluating the resulting integral yields for the 

generalized MCF 
 

 ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

κ−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ρ
−−−ρΓ=ρΓ − 35

2
1165221111 4

;1;
6
5352.4exp,0,0,, m

d
cndddc B

FBxCkxx  (83) 

 
where 
 

 
k

xiB d

m 2
1
2 +

κ
≡  (84) 

 
Thus, as first noted in (ref. 19), the presence of the diffraction factor on equation (81) modifies the 

effect of the cutoff frequency κm. In the case where 
212 21 kxi dmd +κ>ρ , equation (83) reduces to 

equation (80) upon employing the asymptotic representation of the confluent hypergeometric function 
1F1(…). When ρd = 0, equation (83) becomes 
 

 ( ) ( )
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ κ
+κ−ρΓ=Γ − 1

2
1352.4exp,0,00,,

65235221111 k
ixxCkxx md

mcnddc  (85) 

 
In the appropriate limits, this expression gives 

 



NASA/TM—2005-213841 16

 ( ) ( )
[ ]
( )[ ]⎪

⎩

⎪
⎨

⎧

>>λ+−

<<λκ−
ρΓ=Γ

2
0

65267

2
0

312

1111

,102.25631.0exp

,8133.1exp
,0,00,,

lxxxCki

lxxxkCi
xx

ddcn

ddcmn

ddc  (86) 

 
Hence, there is a phase variation in the longitudinal direction, as expected, with an attendant 

attenuation as the longitudinal separation is increased. It must be noted, however, that one needs to realize 
the condition xd>l0 in all cases so as to satisfy the assumption of δ-correlation of the fluctuations along the 
longitudinal axis (ref. 19). Figures 1 and 2 show plots of equation (85) with Γ11(0,0,0) = 1 for a typical 
atmospheric propagation scenario at λ = 0.63 Hm for two values of inner scale size, l0 = 1.0 mm and 
l0 = 1.0 cm, respectively. 
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Figure 1.—Γ11(xc,xd,0) versus xd (in meters)  
for λ = 0.63 mm, l0 = 1.0 mm, xc = 5 km, 

and 122 10−=nC  m–2/3 
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Figure 2.—Γ11(xc,xd,0) versus xd (in meters)  
for λ = 0.63 mm, l0 = 1.0 cm, xc = 5 km, 

and 122 10−=nC  
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